
BITUMINOUS GEOMEMBRANE "BGM"

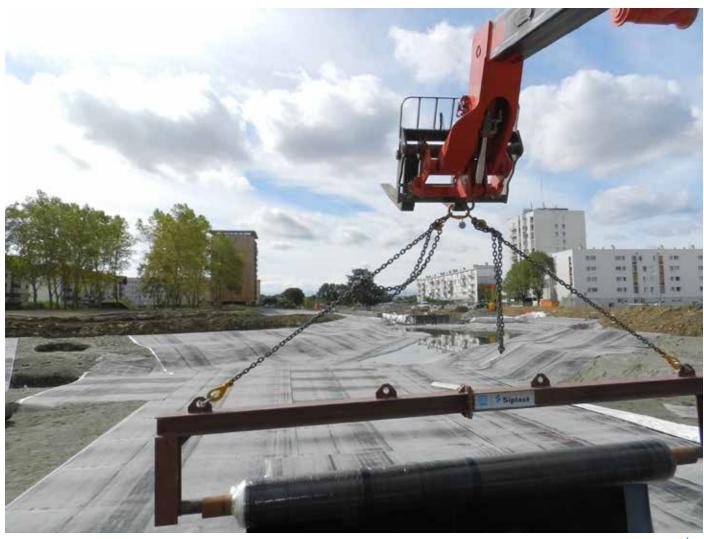
TERANAP

www.bmigroup.com

SIPLAST, THE PIONEER OF BGM

BMI Siplast is the first geomembrane manufacturer. We started the production in 1974 in Mondoubleau, France.

We have a fully dedicated production line for bituminous geomembranes at our factory in Mondoubleau. Our Research and Development department is working hard to ensure the highest quality and to sustain the best properties for our geomembranes over time.

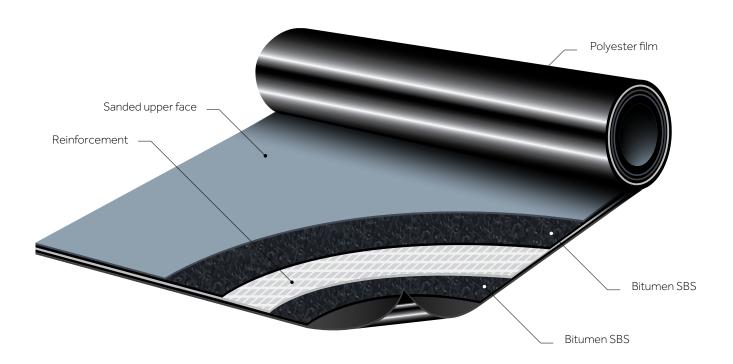

Our knowledge and expertise, developed over the last 46 years around the world, allow us to bring the best technical support to our partners. We provide tailored solutions, adapted to any requirements or specific requests.

Our objective is to succeed together. We are always learning from the different sites we are working on. Our mindset is based on achieving a win-win outcome with all the stakeholders of the project.

We know civil engineering is very specific and unique, that's why our team is fully committed to help you find the solutions you need. We manage large-scale civil engineering jobs, and the high stakes and challenges they are faced with.

THE TERANAP SOLUTION AT A GLANCE

The BMI Siplast elastomeric bitumen membranes combine the advantages of traditional materials like bituminous binders with the advantages of modern materials, in particular polymers and geotextiles.


TERANAP is a geomembrane manufactured from high quality SBS elastomeric bitumen with a silica sand-coated surface.

TERANAP TP

(331, 431, 531 and 631) is reinforced with long fibre non-woven geotextile and glass fibre fleece.

TERANAP EXPERT

(300, 400, 500 and 600) has a stabilised composite reinforcement.

THE TERANAP RANGE

2 large ranges with different thicknesses and types of reinforcement

Table 1: EN standards

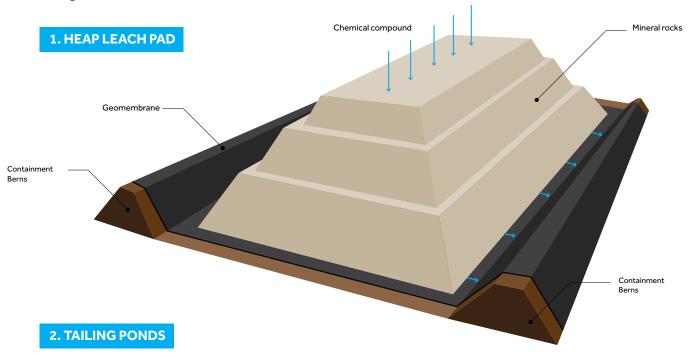
Main Characteristics		Unit	Norms	TERANAP EXPERT				TERANAP TP					
				300	400	500	600	331	431	531	631	GTX 300	
Reinforcement		g/m²	ASTM	175	220	250	300	160	235	275	340	160	
Thickness (target)		mm	EN 1848-1	3,2	3,8	4,3	4,9	3,6	4,1	4,8	5,6	4,8	
Thickness (minimal)		mm	EN 1848-1	3,0	3,5	4,0	4,5	3,3	3,9	4,6	5,4	4,4	
Length		m	EN 1848-1	110	95	85	75	100	90	75	65	67	
Width		m	EN 1848-1	4,0									
Surface		m²		440	380	340	300	400	360	300	260	268	
Maximal strength resistance	MD	- N/50mm	EN 12311-1	1000	1280	1530	1870	1000	1300	1550	1700	1500	
	CMD			900	1065	1245	144	650	1100	1200	1600	1500	
Elongation at break	MD	%		38	42	43	44	52	50	60	70	55	
	CMD			38	42	43	44	56	60	70	70	65	
Static puncturing	Force	kN	EN 12236	3	3,6	4	4,9	2,4	3,5	4,0	5,0	4,6	
Low temperature flexibility		°C	EN 1109	-20									
Water permeability		m³/m²/j	EN 14150	1E10-6									
Gas permeability		m ³ /(m ² .j)	ASTM D 1434	38,6E-6									

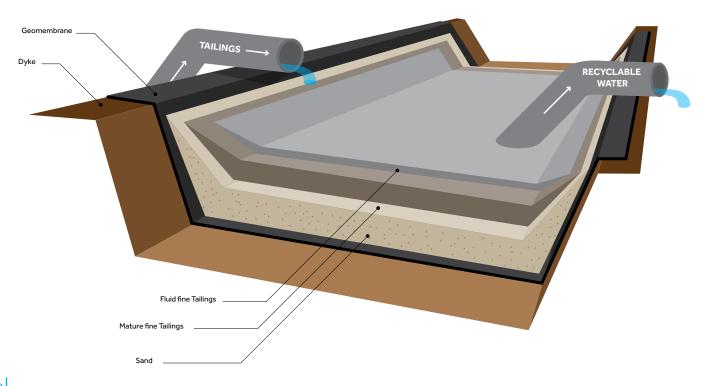
We are also able to manufacture your own geomembrane with the exact lengths you need. Average values are presented.

Table 2: ASTM standards

Main Characteristics		Unit	Norms	TERANAP EXPERT				TERANAP TP					
				300	400	500	600	331	431	531	631	GTX 300	
Reinforcement		g/m²		175	220	250	300	160	235	275	340	160	
Thickness (target)		mm	EN 1848-1	3,2	3,8	4,3	4,9	3,6	4,1	4,8	5,6	4,8	
Thickness (minimal)		mm	EN 1848-1	3,0	3,5	4,0	4,5	3,3	3,9	4,6	5,4	4,4	
Length		m	EN 1848-1	110	95	85	75	100	90	75	65	67	
Width		m	EN 1848-1	4,0									
Surface		m²		440	380	340	300	400	360	300	260	268	
Maximal strength resistance	MD	kN/m	ASTM D 7275	18,5	24	28,5	32,5	19	29	30	36		
	CMD			16,5	20	23	26	14	21	27	29		
Elongation at break	MD	%		42	46	50	55	55	55	65	83		
	CMD			42	46	50	55	65	60	70	85		
Static puncturing	Force	kN	ASTM D 4833	385	500	590	680	410	550	620	700		
Low temperature flexibility		°C	ASTM D 5147	-25									
Water permeability		m³/m²/j	ASTM E 96	6E-14									
Gas permeability		m ³ /(m ² .j)	ASTM D 1434	38,6E-6									

Average values are presented.

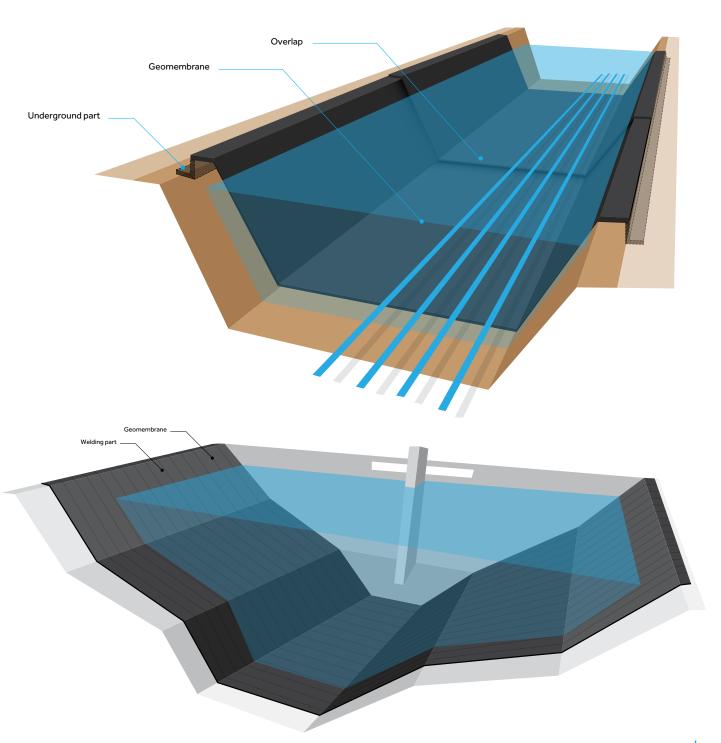



APPLICATIONS

Our Teranap BGM ranges are perfectly adapted to protect the mining environment. For heap leach pad, as well as for tailing pond projects, we can adapt Teranap to the design, height, geometry and constraints of your project.

APPLICATIONS

Mining waste and landfills:



APPLICATIONS

Water is too valuable to lose. Our Teranap BGM ranges prevent it. In irrigation canals, as well as in dams and reservoirs, Teranap is the ultimate barrier against water leakages.

Hydraulic projects:

- Irrigation canals
- Hydroelectric and hydraulic dams
- Industrial reservoirs
- Gold mines
- Mineral Ore storage

SERVICES

We are by your side from the beginning until the end of your project. We ensure that you get the solution you need and ensure the perfect installation on site.

INNOVATION

Teranap Control heralds a revolution. Now, it is possible to control the entire seams of a BGM.

Teranap Seam Control

- Innovative and exclusive technology, under the Siplast patent
- Leak Detection System

Key benefits

- Easy and precise leak detection
- Non-destructive control

WELDING QUALITY CONTROL

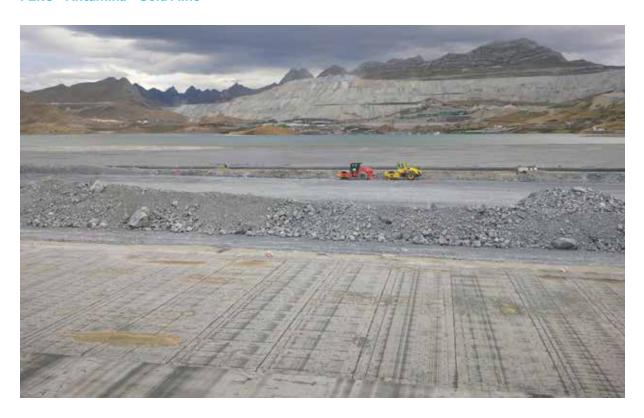
- Leak detection by tracer gas and a lightweight control tool providing a very reliable process to precisely determine any leaks.
- Leak detection instant alarm sounds with gas tracer meter reading and warning flashing light.
- Thanks to the sensitivity of the sniffer canes used along the weld, the portable device detects if there is any presence of tracer gas molecules and locates the precise location of the leak.
- It can be confirmed with a water / soap solution.

PROJECT REFERENCES

DAM AL Boqaata - LEBANON

ARGENTINE CERRO NEGRO

TASMANIA Roseberry Mning



PROJECT REFERENCES

MOROCCO - El Hallasa

PERU - Antamina - Gold Mine

Balama - Mozambique - Mining

Tasmania - Australia - Tailings Dam

CONTACT US!

For more information on Teranap and how it can help your project, please email us at:

contact.international@bmigroup.com